877. A well-known corollary of Murphy's Law is the fact that for a bicyclist, wind is more often a disadvantage than an advantage. In order to verify this empirical law theoretically, we investigate the following model:

An object moves in \mathbb{R}^2 with constant velocity $-\vec{v} = (-V, 0)$ where V > 0 in a uniform wind field with velocity $\vec{w} = (W \cos \theta, W \sin \theta)$, where W > 0

104 Solutions

 $0,\ 0 \le \theta \le \pi$. The total effective velocity is $\vec{u} := \vec{v} + \vec{w}$. We assume the total air resistance \vec{F} to be equal to $c|\vec{u}|\vec{u}$, where c is a positive constant. The drag adverse to the bicyclist's motion is the component of \vec{F} in the x-direction, say $D(\theta, W, V)$. We introduce the quantity $\mu := W/V$.

1. Determine the angle $\theta =: \theta_1(\mu)$ for which

$$D(\theta, W, V) = D(\theta, 0, V).$$

2. Determine the value of μ for which $\theta_1(\mu)$ attains its maximum.

(S.W. RIENSTRA)

Solutions by D. Bruin, H.G. Ter Morsche, S.W. Rienstra.

SOLUTION by H.G. TER MORSCHE.

By using the quantity $\mu = W/V$, the equation $D(\theta, W, V) = D(\theta, 0, V)$ can be written in the form

$$\sqrt{(1+\mu\cos\theta)^2 + (\mu\sin\theta)^2}(1+\mu\cos\theta) = 1$$

In order to solve the equation for θ as a function $\theta_1(\mu)$ of μ and to find the value μ for which $\theta_1(\mu)$ is maximal, we first substitute $x=1+\mu\cos\theta,\ y=\mu\sin\theta$ in this equation. Then, see the figure below, the solution $\theta_1(\mu)$ corresponds to the intersection point P of the circle $C:(x-1)^2+y^2=\mu^2$ and the curve $K:f(x,y):=x\sqrt{x^2+y^2}=1$. Furthermore, the value μ for which $\theta_1(\mu)$ is maximal corresponds to the situation where the line MP is tangent to the curve K at the point P.

Figure 1.

It follows that the x-coordinate $x_1(\mu)$ of P must satisfy the equation

$$2x^3 + (\mu^2 - 1)x^2 - 1 = 0 \qquad (0 < x \le 1)$$

One may solve this equation on several lucky ways or by using Cardano's formula.

The wanted solution $x_1(\mu)$ is given by

$$x_1(\mu) = \left(\sqrt[3]{1 + \sqrt{1 - \alpha}} + \sqrt[3]{1 - \sqrt{1 - \alpha}}\right)^{-1}$$

$$\alpha = \left(\frac{\mu^2 - 1}{2}\right)^3$$

In case $\alpha>1$ (i.e. $\mu>2$) one may take the principal values of the roots in question.

Consequently, one has

$$\theta_1(\mu) = \arccos(\frac{x_1(\mu) - 1}{\mu})$$

Now, we return to the problem of finding the value for which $\theta_1(\mu)$ is maximal. This implies that grad f must be perpendicular to MP at the point $P = (x_1, y_1)$ which leads to the two equations

$$x_1\sqrt{x_1^2 + y_1^2} = 1$$

 $(2x_1^2 + y_1^2)(x_1 - 1) + x_1y_1^2 = 0$

By eliminating y_1 we get

$$x_1^4 - 2x_1 + 1 = (x_1 - 1)(x_1^3 + x_1^2 + x_1 - 1) = 0$$

The solution $x_1 \in (0,1)$ is given by $x_1 = 0.543689...$. Hence $\mu = \sqrt{(x_1-1)^2+y_1^2} = \sqrt{1-2x_1+1/x_1^2} = 1.81538...$, and, finally

$$\theta_1 = 1.82448... \quad (\approx 104.6^{\circ})$$